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We introduce a model for self-generating discrete-space structure based on the 
"local" quantum mechanics of graphs. In this approach, the dimension of space 
becomes a scale-dependent quantity (p dimension); it can, at least in principle, 
be calculated from the theory. We show that the straightforward use of the 
creation and annihilation operator approach (with standard commutation 
relations) leads to contradiction when applied to graphs. We define a refor- 
mulated Fock-space method based on a topological description. The properties 
of the theory are discussed in the framework of a simple solvable model. 

1. I N T R O D U C T I O N  

During the 50 years since the discovery of infinities (Pauli, 1931) in 
quantum relativistic field theories, various criticisms and alternatives to 
different basic axioms have been suggested. In most of these theories, a 
fundamental  length (Heisenberg, 1930, 1938; Ambarzumian  and Ivanenko,  
1930; March, 1936, 1937; White, 1950, 1954) I0 was introduced in such a 
way that a large-distance space- t ime  structure remained unchanged, while 
for distances of order 10, the structure was so modified that ultraviolet 
divergences did not appear.  

The most straightforward way to formulate the above ideas was to use 
a cubic or a hypercubic lattice (Silberstein, 1963; Schild, 1948, 1949; 
Coxeter and Whitrov, 1950; Helund and Tamaka,  1954; Rojansky, 1955; 
Hill, 1955; Das, 1960; Meesen, 1967, 1972) as discrete space or space-time. 
In the gauge-fields-on-lattice approach (Wilson, 1974; Balian et al., 1974) 
to quark confinement, the use of the lattice is mainly technical since it 
enables one to perform straightforward calculations of higher-order terms 
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in perturbation expansion. The common drawback of lattice theories is the 
lack of Lorentz or even rotational invariance. It is suggested that symmetry 
might be restored in the zero lattice spacing limit, or alternatively the 
coupling constant should take a critical value (Wilson, 1974). 

Different formulations of discrete space-time were based on the in- 
troduction of momentum space of constant curvature (Snyder, 1947, 1948; 
Gelfand, 1959; Kadyshevsky, 1961; Kogut et al., 1976). Such approaches 
introduced discrete noncommutative coordinates and modified invariance 
properties at short distances. 

The phenomenological success of the lattice approach (Kogut et al., 
1976; Kogut, 1976), as well as the attractivity of the ideas prompted us to 
search for whether the concept of discrete space-time might support a 
more fundamental treatment. This has led us to basically new concepts. 

In our model (Dadi6 and Pisk, 1977), the space structure is discrete 
but not frozen as in the lattice approach; on the contrary, it is 
"amorphous" and changes with time. We represent the space as a set of 
abstract objects with certain relations of neighborhood among them. The 
structure consisting of objects and neighborhood relations is recognized as 
a graph [in terms of the mathematical theory of graphs (Essam and 
Fischer, 1970; Harary, 1969)]. Accordingly, the lattice is only a special 
kind of graph. 

The metric of the graph is given by graph theory. The graph does not 
possess dimension in a traditional sense, but our intuitive feeling can be 
translated into an appropriate mathematical expression (Kraemer et al., 
1974). The dimension thus defined is scale dependent. It is generated 
through the model dynamics and thus becomes a dynamical variable. 

As the dynamics should not depend on point and line labels, an 
appropriate symmetrization is necessary. It comes out that the standard 
creation and annihilation operator approach leads to contradiction when 
applied to graphs; instead, we define a reformulated Fock-space method 
based on a topological description. 

We define and solve a simple model in the framework of "local" 
dynamics. The model suggests that only relative motion has a definite 
meaning. In addition, the spectrum of the model is relativistic in a certain 
sense .  

The present paper is divided into six sections. In Section 2 we 
introduce our approach in an intutive way; we define the metric and the 
notion of dimension. In Section 3 we build a Hilbert space of states and 
reformulate the Fock-space method. Section 4 is devoted to "local" dy- 
namics and a solvable example. Section 5 contains our physical picture. 
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2. GRAPH AS A METRIC DISCRETE SPACE; N O T I O N  OF 
D I M E N S I O N  
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If we try to analyze what is essential in our intuitive notion of space 
arising from experience as well as science, we find that it is the existence of 
some objects and the relation among them. This relation may be identified 
as a relation of neighborhood, and the way the objects interact is closely 
related to it. 

Now we use this extraction to build our concept of discrete-space 
structure. Suppose there is a finite or infinite set of objects S =  ( a , b , . . . ) .  
These objects are abstract in all their properties except for a relation of 
neighborhood. To each object we adjoin a set of objects al,a 2 . . . . .  which 
we call neighbors. The neighborhood relation n is a relation with the 
following properties: 

1. It is a relation between two objects: anb.  
2. It is commutative: a n b ( =  = = ) b n a .  
3. It is not identical: a)r 
4. It is not transitive: anb ,  b n c ( =  ~ = ) a n c .  
5. It is exclusive: there is no sense in discussing double neighbor- 

hood between two objects. 
The structure consisting of all objects and neighborhood relations 

with properties 1-5 is well known in mathematics (Essam and Fischer, 
1970; Harary, 1969); it is called the graph and has been the subject of 
extensive investigations. In order to see this identity, we introduce a 
one-to-one correspondence between objects and points (vertices) of a 
graph and between neighborhood relations and lines (edges). This corre- 
spondence is shown in Figure 1. 

D 

A 

Fig. L Correspondence: (object, neighborhood)-,(point, line). 
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Properties 2, 3, and 5 are restrictions on general graphs in the sense 
that our graphs are undirected, do not possess loops, and are not multi- 
graphs. There are additional restrictions of statistical and dynamical 
origin: graphs should be unlabeled and connected. 

A graph with such properties is a possible realization of discrete-space 
structure. 

The distance d(a,b)  between two points a and b on a graph is 
naturally defined (Essam and Fischer, 1970) as a number of lines n I in the 
shortest path with the initial point a and the terminal point b: 

d(a ,b )  = rnin. nt(a,b, path)  (2.1) 
path 

The distance function defined by (2.1) is positive definite and satisfies the 
following conditions: 

1. d ( a , b ) ~ O  
2. d(a, b) = d(b, a) 
3. d ( a , b ) + ( d ( b , c )  >d(a ,e )  
4. d(a,b)  = O( = = = >a = b (2.2) 

By convention, d(a, b)= oo if there is no path relating a with b, i.e., a and b 
belong to the disconnected components of the graph. As the dynamics is 
local, the disconnected components remain disconnected and this restricts 
our further considerations to connected graphs only. In defining (2.1) we 
took freedom in the choice of the unit of length: it is such that the shortest 
distance (lp the length of the line) is 1 in these units: 

dmin(a , b )  ----- l 1 ----- 1, a # b  (2 .3)  

Having the notion of metric, we are able to consider the question of 
dimension. It is clear that the mathematical definition of dimension valid 
for a continuous space is not applicable to a space with discrete metric 
because of the limiting procedure, The usefulness of this definition as a 
procedure for determining the dimension of some object experimentally, is 
doubtful even for a continuous space. The reason is that there is no 
probing particle with infinitely small wavelength. On the contrary, the 
range of wavelength is limited and therefore we have to raise the question 
of dimension for each range of energies separately. Our definition will be 
based on the definition of the physical dimension of some object given by 
Kraemer, Nielsen, and Tze (1974): 

n ( p ) =  d i n m ( p )  (2.4) 

where m(#) is the minimal number of spheres S r of radius r < p needed to 
cover the object. When p--)0, D(0) is just the mathematical dimension. 



Di~rete-Space Slructure 349 

Now we generalize the above definition to the case of a graph. 
Consider the region M of a graph defined by 

M -  (a;  d(a,b) < K )  (2.5) 

a and b are points on the graph, d(a, b) is the distance function given by 
(2.1), and K is an integer. In the same way we define a sphere of radius p 
around some point c, 

S(c,#) = (a;  d(a,c) < p) (2.6) 

Analogously to (2.4), we define m(p) as the minimal number of spheres 
S(c,p) necessary to cover the region M. Now the p dimension of M is the 
following (differentials are going into differences): 

lnm(p + 1) - l n m ( p )  (2.7) 
Din(p) = - In(p+ 1 ) - l n p  

This definition will be further modified by quantum mechanics (Kraemer 
et al., 1974) by using the quantum mechanical averages (m(p)) instead of 
m(p). For  the macroscopic region on a cubic lattice, this definition gives 
DM(#) = 3 provided 1 <<p<<K. It is evident that a graph may have regions 
of different dimensions. We expect that the requirement of dynamical 
stability will be strong enough to force the system to choose D(p) fixed in 
almost all regions for a scale p large enough. 

3. A REFORMULATED FOCK-SPACE M E T H O D  

Now we have to construct a Hilbert space of states keeping in mind 
that the points and lines are not  distinguishable. For  pedagogical reasons 
as well for clarification of different aspects of the problem, we construct ~C 
in several steps. 

In the first step, a vector in ~ is adjoined to each connected graph 
with labeled points and lines. Vectors adjoined to different graphs are 
orthogonal. A set of all such vectors forms a basis in ~ .  

constructed in such a way is too large. Keeping the point labels 
fixed and choosing a proper symmetrization of lines, we construct a vector 
corresponding to a graph with labeled points and unlabeled lines. The fact 
that no more than one line can relate two points leads to the choice 
between Fermi and Pauli 1 statistics. According to the chosen statistics, we 
introduce creation and annihilation operators for lines with commutation 
relations: for Fermi statistics, 

1Pauli statistics is widely used in the theory of ferromagnetism for a correct treatment of spin 
waves. See, for example, Dyson, (1956). 
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( [3#,[3~ )=8,k~i , (3.1) 

for Pauli statistics, 

1&,[3~l=O (i,j)~=(k,Z) (3.2) 

{ [3#,[3~} = 1 (3.3) 

The indices i and j  (i <j)  label the end points of a given line. The vacuum 
state to which the operators [3 o. apply corresponds to a "graph" consisting 
of labeled points only. 

Thus we are led to two subspaces of ~ : ~ A L  with antisymmetrized 
lines and labeled points, and ~JCSL with symmetrized lines and labeled 
points. 

In the third step, we perform symmetrization over points. The single 
state is now represented by an unlabeled graph (unlabeled points, un- 
labeled lines). According to the type of symmetrization, such states form a 
basis in one of the four subspaces ~SL, SP' ~SL, AP, ~CAL, SP, and ~AL, AP" 

After symmetrization, the line production operator should refer not to 
labels (which are now absent), but to points identified by the topological 
description on a given graph. However, application of this operator 
changes the topological description of all points and lines, so that the 
multiplication of two or more operators referring to the topology of the 
same graph does not make sense. In other words, when labels are absent 
there is no unique way to identify (topologically) the "same" point on 
different graphs. 

As a consequence, a simple Fock-space method, expressed through 
creation and annihilation operators with commutation relations such as 
(3.1) or (3.2) and (3.3), cannot be used for construction of the basis in any 
of the spaces ~ L ,  SP, ~SL, AP, ~AL, SP, ~CAL, AP" 

In order to reformulate the Fock-space method, we consider two 
(unlabeled) graphs G and G', which differ in one line. The corresponding 
(symmetrized) states are I G ) and [G'). We define the operators b~a,, baG,: 

b~*G,IC")-- ~a"a~a'la ')  

baa,I G" ) ~ 8~,,a,~aG,I G ) (3.4) 

or otherwise, 

<a" I baG,I a"  > = 8aa~SG'a"~GG" (3.5) 

The operator b~a,(bca,) thus defined may be interpreted as a line 
creation (annihilation) operator (the line by which G and G' differ). 



Discrete-Space Structm'e 351 

On the graph G we can draw an additional line leading to G', at j 
positions which cannot be distinguished by the topological description. In 
the same way, to obtain G from G', we can remove a line from l 
topologically equivalent positions. The numbers j and 1 depend on the 
structure of G and G ' : j =j( G, G'), l= I( G, G'). 

We choose the constant r ~ ,  to depend on j and l in the following 
way: 

xaa, = [ ( j  + 1)1] I/2 (3.6) 

The creation and annihilation operators thus defined are relational in 
the sense that they do not refer to labels ("reference frame"!) but to a 
definite topological structure. 

Using the operators bat~,, the state G may be constructed from the 
vacuum state 10) (graph G o with no lines) if the chain of graphs 
Go, G1, G2,..., G,, G (where the nearby graphs differ in one line) is known: 

]G) = b*a._,a./r~._,~ " "  bta,a2/xa,~2b*aoa,/raoa,I O) (3.7) 

Unfortunately, the chain Go,..., G n, G is not unique, and different 
representations of I G ~ are possible. 

4. THE LOCAL INTERACTION IN THE QUANTUM 
MECHANICS OF GRAPHS 

The dynamics of a graph represents the dynamics of its structure. The 
change of the graph structure should be local in terms of the metric 
defined by (2.2). (This metric is generalized to unlabeled graphs, so that 
instead of to labels we refer to the topological description of the point 
position.) 

The interaction is local in the sense that (a) the interaction involves 
only processes with a minimal change of a distance structure, and Co) the 
interaction depends only on the local properties of the graph structure. 

The interaction with such properties generally includes two terms. The 
first term, which we call the "potential," is diagonal in the basis of 
graph states and is a function of graph states: 

1 
V--- EjaC(ma)+-~ ~ jabD(ma, mb)+. . .  (4.1) 

a a , b  
d ( a , b )  = 1 

Here Ja is the number of equivalent points of class a, Jab is the number of 
equivalent lines defined by the points belonging to classes a and b, m a and 
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m b are the number of lines terminal to the points from classes a and b, 
respectively, and C(ma) and D(ma,mb) are some functions. 

The second term, which we call "kinetic energy," is graphically 
represented in Figure 2. Only those elements of the graph structure are 
shown which are essential for the interaction. The interpretation of Figure 
2 is evident. Diagram (a) represents the creation (annihilation) of one line 
(only when two points have a common neighboring point), diagram (b) 
represents the creation of one point and one line, and diagram (c) repre- 
sents a jump of one line. 

Obviously, the "potential" and "kinetic energy" terms do not com- 
mute, and thus a stationary state will be a linear combination of graph 
states with different configurations. 

(a) 

Co) 

\ 0 0 ~ _ _ 0 / 0 

(c) 

l~g. 2. Graphical representation of "kinetic energy." 
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The above scheme is the Hamiltonian formulation of the quantum 
mechanics of graphs. In this formulation, distances are discrete but time is 
continuous. The question whether time may or must also be discrete 
remains open. 

To gain an insight into graph dynamics, we have to search for a 
solvable example. The prize for solvability will be in weaker locality 
constraint. 

We define the "potential energy" in the following way: 

V= ( Y(Nt-  Nr) "allowed" graph (4.2) 

t 0 "forbidden" graph 

Here N t is the number of triangle subgraphs, N r is the number of rhomb 
subgraphs, and Y is a constant (Y= Y*). 

In this example we define the graph as "allowed" if it is a simple chain 
graph which in addition contains only rhombs and triangles as subgraphs 
(Figure 3). The graph is "forbidden" if it is not "allowed." 

The "kinetic energy" is defined as 

Z 
T=  ~- X '(b~tG' + be'G) (4.3) 

G, G' 

The summation runs only over allowed graphs; Z is a constant 
( z  = z*) .  

O O / ~  O 

O ~ .  O 

Fig. 3. Triangle and rhomb subgraph. 
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The "kinetic energy" thus defined transforms triangle subgraphs into 
rhomb subgraphs and vice versa. Because of that, the constant of motion is 
the sum 

N =  N t + N r (4.4) 

To perform some calculation, we introduce the following notation for 
the "allowed"-graph states: 

I G > = lsl,s2 . . . . .  sn; N;  d p d  2 . . . . .  dN_l ) (4.5) 

Here for the ith subgraph from the left, s i--(+ 1 for triangle, - 1  for 
rhomb) subgraphs. In this example we distinguish the left from the fight 
side of an infinite chain graph, but this is not essential for our main 
conclusions, dl .... ,dN-1 are relative distances between neighboring sub- 
graphs. 

Now we can perform calculations inside the invariant subspaces of a 
given N. 

For N--0  there is a single eigenstate [0) corresponding to a simple 
infinite chain: 

HI0> = ( T +  V)10>--0 

For N = I we have 

H I +  1; 1)--- Yt+ 1 ; 1 ) + Z  I - 1 ; 1 )  

H I -  1; 1 ) = Z I +  1; 1 ) -  YI -1 ;  1> 

The solutions are as follows: 

I--- > = [Z2+(  zw- Y)2]-l/2[ZI+ 1; 1 ) + ( _ + Z -  r ) l -1 ;  1 ) ]  

HI-+ l> = +__ [ y2+ Z 2],:1 +-- 1) 

For N = 2 we have 

Hll ,  1 ; 2 ; d ) =  Y [ l , 1 ; 2 ; d ) + - ~ [ l l , -  1 ;2 ;d)  

+ l -  1, l; 2 ;d> +(1 - 8a,)(I 1, - 1 ; 2 ; d -  17 + 1 -  1, 1 ; 2 ; d -  1))]  
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The solutions are classified with the help of the "relative momentum" p, 
and the eigenvalues are defined as 

hx,x~(p ) =~lh(p)  +hzh(-p) 
~i=_+l 

P h(p) = [ y2+  4Z2sin2 .~ ]1/2 (4.6) 

For general N, the momenta Pl . . . . .  PJv are introduced with the condition 

N 
rr (4.7) E p i= [1  + ( -  l fV]~ - 

i ~ l  

and the eigenvalues are 

N 

hx,...xu(Pl"" "PN)= ~, ~.h(p~) (4.8) 
i = l  

The properties of the model are significant: 
(a) The model describes the dynamics of N "particles" in a one-di- 

mensional discrete world. The "particles" are almost free with the short- 
range interaction only. 

(b) It is not possible to introduce absolute motion. In graph dynamics, 
the natural reference frame appears as the unique possibility. 

(c) The spectrum is relativistic in the following sense: The spectrum is 
symmetric with respect to zero. In the expression for single-particle energy 
(4.6), the correspondence c = Z; m = Y/Z  2 leads to the expression 

P h(p ) -. [ m2c4 + 4c2sin2 ~ ] 1/2 (4.9) 

which is relativistic in the region Ipl/2<<l. Under the condition Y/Z<< 1, 
this behavior extends to the regions where the group velocity differs from c 
by an amount that is arbitrarily small. 

5. THE WORLD OF PHYSICS IN THIS FRAMEWORK 

Most of the physical insights given in the preceding sections depend 
on the special choice of the Hamiltonian. We can discuss some properties 
in the framework of our simple solvable model, or by assuming the 
existence of a Hamiltonian which possesses a richer structure. So we may 
raise the question how to translate the known phenomena into the lan- 
guage of such a theory. 
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The phenomena we want to discuss here are vacuum, particles, and 
relativity. We shall try to stress the differences between our approach and 
continuous-time theories. 

Vacuum must be three dimensional and isotropic, at least in the whole 
range where quantum electrodynamics (QED) is tested to be valid. This 
leads us to the conclusion that the ground state of the system should have 
a dimension D(p)=3 for some p ) l  2, and 12 should be smaller than the 
lower limit of distance of validity of QED. l 2 and D(p) are quantities 
calculable from theory. Thus we immediately obtain two scales: l 1 is the 
distance between two points (1 in the chosen units) and 12 is the scale at 
which the ground state exhibits a definite p dimension. With respect to 
this, vacuum in our solvable model is one dimensional for all p>> 1 because 
of the simplicity of the Hamiltonian. 

In our framework, particles may appear in two basically different 
ways. In one way, which is more attractive for us, a particle is a low-lying 
excited state generated by the same interaction as the ground state. This 
excited state differs from the ground state by local peculiarities in structure 
of graphs states entering a linear combination. This excited state must 
possess a certain degree of stability and it is evidently an extended object. 
This introduces new scales: radii of extension of particles. 

The type of peculiarities will depend on the chosen interaction, but it 
is interesting to point out a possibility which is the particular property of 
this model and which is absent both in continuous space-time models and 
in lattice models. It is possible that the dimension of a particle (i.e., the p 
dimension of the region of peculiarities) is different from the p dimension 
of the ground state. There are two interesting possibilities: 

1. The p dimension varies when approaching the center of the 
peculiarity region. 

2. The p dimension of the peculiarity region is fixed but is not that of 
the ground state. For example, D(p) may be 1 or 2 (strings and plates 
already known from different models), but it may also be equal to 4 or 
even larger. This offers a possibility of natural appearance of additional 
symmetries (broken and exact). 

Our solvable model exhibits these features only in part. We can 
identify a linear combination of rhombs and triangles as particles, but 
these peculiarities are essentially one dimensional as a consequence of a 
dynamics which is too simple. 

The other way of introducing particles is to put them in by hand 
through new degrees of freedom, i.e., additional "charged" points and lines 
which carry the quantum numbers of particles. Such an approach is close 
to the way quarks are introduced into Wilson's lattice. 

In our approach, the problem of fixing the frame is more serious than 
in continuous-space or lattice theories. This is because graph states, which 
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are a basis  of the F o c k  space,  are symmetr ized ,  and  only the topological  
s t ructure of graphs  is relevant.  As a consequence,  only  relative dis tances 
be tween  particles (peculiarit ies of the structure) m a y  be meaningful .  Our  
solvable model  p roves  these features.  Even  more ,  the relativistic spec t rum 
of this mode l  is compat ib le  with a na tura l  f r ame  in which the total  
m o m e n t u m  is zero. The  picture  of space emerging  in this way  consists of  
particles and  ground-s ta te- l ike  structures spanned  be tween  them. Thus,  
observables  (distances, m o m e n t u m , . . . )  can be def ined only for  m a n y - p a r -  
ticle states. For  a more  realistic Hami l ton ian ,  this defini t ion has evident  
l imitat ions corresponding to the scale 12 and  the radii  of particles. 

The  dynamics  of  the mode l  is local and  thus the speed of a signal 
canno t  be  infinite, and  we m a y  expect  some kind  of relativistic invariance.  
Spon taneous  b r e a k d o w n  of the symmet ry  is, of  course, possible;  for  
example ,  in the case of nonloca l  in teract ion or if the degrees of f r e edom 
are drast ical ly restricted. 

Keep ing  in mind  the above  discussions, we m a y  conclude  that  invari-  
ance will be  more  "general- re la t ivi ty"- l ike  and  this makes  it plausible  to 
settle the fundamen ta l  length of gravi ty  somewhere  in the range  be tween  l 1 
and  12 . 
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